
PEMA: Practical Efficient Microservice Autoscaling
Md Rajib Hossen and Mohammad A. Islam

The University of Texas at Arlington, Texas, USA

q Adoption of microservices is growing steadily
q Microservices consist of independent and loosely-

coupled units which are easy to deploy and update

q Microservices introduce new challenges in resource
management due to their large configuration spaces
and complex interactions between services

q Recent approaches for resource management include
rule based or Machine Learning (ML) based models

q Rule based fails to handle microservices complexities
q ML requires offline data collection for training and

intentional SLO violations for boundary data

q The main goal is to find efficient resource allocation 
quickly and without violating SLO

q PEMA does not require offline data to train
q PEMA navigates the configuration space from ample 

resources to optimum resource allocation
q It utilizes the observation that “monotonic resource 

reduction” leads to monotonic increase in latency

Settings
q Local Kubernetes cluster consisting of 5 nodes
q Three representative microservices applications –

Sock Shop, Train Ticket, and Hotel Reservation
q Compared with OPTM – offline exhaustive search to

find optimum, and rule based (RULE) algorithm.

Results
q PEMA converges to optimal resource allocation for

all microservices (Figure 4)
q PEMA performance is close to OPTM (within 5%)

and outperformed RULE by 33% (Figure 5)

Figure 2: CPU allocation dictates latency. 

Figure 1: Monolithic vs Microservice architecture

q Early detection of SLO violation
q Use knowledge from execution history in future

resource allocation
q Enable agile vertical & horizontal scaling

q Sub-optimal CPU allocations lead to SLO violations
q Threshold of metrics such as utilizations does not

help in finding good CPU allocation
q Optimum CPU allocation is critical for performances,

yet not easy to find

q Optimization objective is to minimize total resources 
while maintaining SLO in each time step

q Uses the response time as a guide to reaching the 
optimal resource allocations (Fig 3)

q Uses microservices-wise metrics to avoid bottlenecks 
and identify candidates for further reductions

q Applies resource reduction iteratively and uses 
feedback to re-evaluate reduction parameters. 

q Tunable parameters to control resource reduction
q Uses exploration to avoid local minima (Fig 4)

Figure 5: Performance comparison on Train Ticket 
(left), Sock Shop (middle), and Hotel Reservation (right)

Figure 4: Convergence for Sock Shop (top two), Train 
Ticket (lower left), and Hotel Reservation (lower right).

Full version has been accepted in HPDC’22.
Md Rajib Hossen, Mohammad A. Islam, and Kishwar Ahmed. 2022. Practical
Efficient Microservice Autoscaling with QoS Assurance. HPDC ’22, June 27-July 1,
2022, Minneapolis, MN, USA. https://doi.org/10.1145/3502181.3531460

Challenges

Microservice Architectures Our Contributions

Future Works

Design of PEMA

Figure 3: Monotonic resource reductions increases
latency in 95% of the time. Response also reach to SLO.

Performance Evaluation


