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q Adoption of microservices is growing steadily
q Microservices consist of independent and loosely-

coupled units which are easy to deploy and update

q Microservices introduce new challenges in resource
management due to their large configuration spaces
and complex interactions between services

q Recent approaches for resource management include
rule based or Machine Learning (ML) based models

q Rule based fails to handle microservices complexities
q ML requires offline data collection for training and

intentional SLO violations for boundary data

q The main goal is to find efficient resource allocation 
quickly and without violating SLO

q PEMA does not require offline data to train
q PEMA navigates the configuration space from ample 

resources to optimum resource allocation
q It utilizes the observation that “monotonic resource 

reduction” leads to monotonic increase in latency

Settings
q Local Kubernetes cluster consisting of 5 nodes
q Three representative microservices applications –

Sock Shop, Train Ticket, and Hotel Reservation
q Compared with OPTM – offline exhaustive search to

find optimum, and rule based (RULE) algorithm.

Results
q PEMA converges to optimal resource allocation for

all microservices (Figure 4)
q PEMA performance is close to OPTM (within 5%)

and outperformed RULE by 33% (Figure 5)

Figure 2: CPU allocation dictates latency. 

Figure 1: Monolithic vs Microservice architecture

q Early detection of SLO violation
q Use knowledge from execution history in future

resource allocation
q Enable agile vertical & horizontal scaling

q Sub-optimal CPU allocations lead to SLO violations
q Threshold of metrics such as utilizations does not

help in finding good CPU allocation
q Optimum CPU allocation is critical for performances,

yet not easy to find

q Optimization objective is to minimize total resources 
while maintaining SLO in each time step

q Uses the response time as a guide to reaching the 
optimal resource allocations (Fig 3)

q Uses microservices-wise metrics to avoid bottlenecks 
and identify candidates for further reductions

q Applies resource reduction iteratively and uses 
feedback to re-evaluate reduction parameters. 

q Tunable parameters to control resource reduction
q Uses exploration to avoid local minima (Fig 4)

Figure 5: Performance comparison on Train Ticket 
(left), Sock Shop (middle), and Hotel Reservation (right)

Figure 4: Convergence for Sock Shop (top two), Train 
Ticket (lower left), and Hotel Reservation (lower right).
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Figure 3: Monotonic resource reductions increases
latency in 95% of the time. Response also reach to SLO.
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