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ABSTRACT
Offloading resource-hungry tasks from mobile devices to an
edge server has been explored recently to improve task com-
pletion time as well as save battery energy. The low la-
tency computing resource from edge servers are a perfect
companion to realize such task offloading. However, edge
servers may suffer from unreliable performance due to its
rapid workload variation and reliance on intermittent re-
newable energy. Further, batteries in mobile devices make
online optimum offloading decisions challenging since it in-
tertwines offloading decisions across different tasks. In this
paper, we propose a deep Q-learning based task offloading
solution, DeepTO, for online task offloading. DeepTO learns
edge server performance in a model-free manner and takes
future battery needs of the mobile device into account. Us-
ing a simulation-based evaluation, we show that DeepTO
can perform close to the optimum solution that has com-
plete future knowledge.

1. INTRODUCTION
The increasing adoption of user-level artificial intelligence

(e.g., smart assistant) is pushing more and more resource-
hungry applications to mobile devices. These devices, how-
ever, are heavily resource-constrained systems as they are
equipped with slower processors and powered by batteries
with limited capacity. Consequently, to alleviate the com-
puting burdens, offloading demanding tasks/applications from
mobile devices to a computer server has been actively ex-
plored [1, 10]. Towards that the emerging edge computing,
with its low-latency computing resource at the Internet’s
edge, is a perfect companion to realize mobile task offload-
ing to edge servers.

Edge servers, however, may suffer from unreliable perfor-
mance as they are subject to more rapidly varying work-
load than larger data centers with many servers [8]. This
is because edge servers are spread geographically and have
small serving areas. Therefore, they can experience a larger
workload change due to a few users. Besides, many edge
servers/data centers utilize renewable energy sources (e.g.,
solar panels) to supplement their power demand [6]. The
intermittent nature of renewable energy can also limit edge
server’s capacity and hence its performance.

When the edge server is experiencing a workload spike or
the server capacity is capped due to limited renewable gener-
ation, its service performance is adversely affected. To tackle
this performance degradation, as shown in Fig. 1, edge com-
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Figure 1: Mobile devices offload resource hungry
tasks to the edge server. The edge server further
offloads tasks to cloud during high workloads.

puting comes with fail-safe options that route workloads to
other low utilized edge servers or the cloud [1, 10]. However,
existing literature assume that an offloaded task bound to
the edge server will always be processed at the edge [12, 7]
and focus mainly on capacity constraints to optimize task
offloading. More importantly, the mobile device remains
oblivious of this edge-to-cloud offloading which may increase
task completion time due to the added communication and
data transfer time between the edge server and the cloud.

Optimizing task offloading under unreliable edge perfor-
mance along with the limited battery is challenging. First,
all task offloading decisions are coupled since they affect the
battery energy. For instance, a task processed at the mo-
bile device now uses up battery energy and may force future
tasks to offload due to limited available battery. Second, the
unreliable edge performance makes it difficult to accurately
estimate the task completion time when a task is offloaded to
the edge. Further, the edge-to-cloud offloading varies with
different edge servers due to their diverse operating environ-
ments. Hence, rather than using a generalized approach, it
needs to be individually estimated at each edge server.

To tackle both these challenges, we propose a deep Q-
learning based solution called DeepTO. It decides task of-
floading in an online fashion and incorporates future tasks
into account by using a Markov decision process (MDP) for-
mulation. Moreover, DeepTO learns the edge-to-cloud of-
floading behavior in a model-free manner based on its envi-
ronmental feedback. Our choice of a learning-based solution
is motivated under the assumption that, even though invis-
ible to a mobile device, the edge-to-cloud offloading is done
following some policy at the edge server, and therefore, this
policy can be learned and utilized in making better offloading
decisions. We conduct a simulation-based evaluation with
a mix of real-world and synthetic traces, and we find that
DeepTO performs close to the optimum solution with com-
plete future information.

2. MOBILE TASK OFFLOADING
Here we formalize our offloading problem for the mobile

device and then present our solution. We do not incorporate
the edge server management (and hence the edge-to-cloud
offloading) which is not a part of mobile’s offloading decision.



2.1 Problem Formulation
We consider the k-th offloading task in the mobile device

is represented using a tuple ak = {ck, dk} where ck is the
task’s computation requirement and dk is its data size. For
each offloading task, the mobile device can either process it
on the mobile device or offload it to an edge server.1 We use
an event-triggered model where every new offloading task
invokes an offloading decision. The offloading decision for
task ak is represented by xk ∈ {0, 1} where xk = 0 indicates
ak will be processed on the local device and xk = 1 indicates
ak will be offloaded to the edge server.

Task completion time. In our context, the task com-
pletion time consists of both the processing time and data
transmission time. The processing time of task ak depends
on its processing requirement (ck) and the allocated com-
puting resource and can be represented as

tprk = (1− xk) · ck
Fm(µm

k )
+ xk ·

ck
F e(µe

k)
(1)

where µm
k is the mobile device utilization and µe

k is edge
server utilization, while Fm(µm

k ) and F e(µe
k), functions of

utilization, are the allocated computing resources in cycles
per unit time on the local device and the edge server, re-
spectively. The data transmission time, on the other hand,
depends on the size of data dk and available transmission
rate of the uplink and can be represented as

ttxk = xk ·
dk
uk

(2)

where uk is the uplink rate at the time when task ak is being
processed. uk varies with time and depends on the transmis-
sion medium (e.g., WiFi vs 4G/LTE), condition of the wire-
less channel, and network traffic. We do not add the time
required for downloading the results from the edge server
since the result returned are typically not data-intensive [2].
Combining the processing time and transmission time to-
gether we write task completion time for task ak as

tk = tprk + ttxk (3)

Energy consumption. As in our task completion time,
the energy consumption also consists of two parts - pro-
cessing energy and data transmission energy. Here we are
only concerned about the energy consumption of the mobile
device and hence edge offloaded tasks consume no process-
ing energy whereas tasks processed on the mobile device do
not incur any transmission energy consumption. The energy
consumption of task ak can be expressed as

ek = (1− xk) · eprk (fm
k ) · tprk + xk · P tx

k (uk) · ttxk (4)

where, eprk (fm
k ) is the energy consumption rate for occupy-

ing computing resource Fm(µm
k ) on the mobile device and

P tr
k (uk) is the transmission power of the mobile device for a

transmission rate of uk.
Objective. Our objective is to optimize the task offload-

ing decision at the mobile device. This optimization is a
multi-objective problem where we want to minimize the task
completion time and energy consumption. We formalize this
as the following optimization problem OPTO (OPtimum
Task Offloading).

1Further offloading from edge to cloud is done by the edge
and invisible to the mobile.

OPTO : minimize
xk

∑
i

(tk + w · ek) (5)

Here, w is the weight parameters for energy consumption
and determine how much emphasis OPTO puts on energy
consumption over minimizing task completion time.

Challenges. Finding the optimum solution for OPTO
is challenging. First, due to the limited battery energy of
mobile device, the offloading decision across multiple tasks
become intertwined since using energy for processing or data
transmission for a current task leaves less energy for future
tasks. Therefore, OPTO cannot be solved optimally without
prior knowledge of all offloadable tasks’ arrival time and re-
source requirements. Second, due to the edge server’s unpre-
dictable performance, during making the offloading decision
for task ak, its task completion time tk cannot be modeled
accurately. Meanwhile, the data uplink rate rk, and conse-
quently the energy consumption for data transmission also
varies with time due to varying channel conditions. Hence,
solving OPTO must also incorporate estimation of tk and
ek. However, these estimation models may vary significantly
across different mobile devices as well as edge server and its
service locations, making individually modeling for numer-
ous different cases exhaustive. OPTO, therefore, is an ideal
problem for a learning-based solution where no such models
are required.

Next, we formulate the task offloading problem using a
MDP and propose a deep Q-learning based solution which
makes offloading decision online and does not require esti-
mation of tk and ek (i.e., model-free).

2.2 MDP Formulation
We model our problem as an event-triggered discrete-time

MDP where each offloading task starts a new time slot in-
dexed by k. Our system state sk consists of the task ak,
available battery energy ebk, mobile device utilization µm

k ,
edge server utilization µe

k, and uplink rate uk. Note that,
while each task ak’s computation requirement ck and size
of data dk can be known in advance (e.g., image size for
a face recognition task), we can seamlessly replace ak with
application id with unknown task sizes. We summarize our
MDP as follows:

• System state: sk = (ak, e
b
k, µ

m
k , µ

e
k, uk) ∈ S

• Action: xk ∈ A(sk)

• State transition probability: P (sk, xk, sk+1)

• Reward function: rk = R(sk, xk, sk+1)

Here, A is the action space which depends on the current
state sk, P (sk, xk, sk+1) is the probability of transition from
state sk to sk+1 for action xk, and R(sk, xk, sk+1) is the
reward for taking action xk at state sk and moving to sk+1.

Our discrete action space A restricts an offloading deci-
sion from draining mobile battery below zero. On the other
hand, while our battery energy ebk evolves with the action
taken, and therefore follows Markovian assumption, the of-
floading task ak and µm

k depends on mobile user behavior.
Also, instead of the current state and action, change in edge
server utilization µe

k and uplink rate uk are determined by
external factors. We circumvent this non-Markovian behav-
ior by estimating such state variables for the next time slot

30 Performance Evaluation Review, Vol. 48, No. 4, March 2021



LSTMFC FCFC
State Q Values

100 50 50 2

hkhk-1

Figure 2: DeepTO’s neural network and LSTM layers.

k + 1 by using a long short-term memory (LSTM) network
in our design [3]. Finally, to comply with the optimization
objective of OPTO, we set the state transition reward as

rk = R(sk, xk, sk+1) = − (t∗k + w · e∗k) (6)

Note here that, unlike OPTO, which uses Eq. (3) and (4) to
estimate task completion time tk and energy consumption
ek, respectively, the reward rk in our MDP formulation is
accurately calculated at the end of sate sk based on actual
observed completion time t∗k and energy consumption e∗k.

2.3 DeepTO
Here we propose a reinforcement learning-based solution,

DeepTO, to solve our MDP problem. In DeepTO, we apply
Q-learning which is a widely used reinforcement learning-
based solution for solving problems with an unknown en-
vironment. In reinforcement learning, an agent learns the
best possible actions in every state from the environmental
feedback received for its actions.

We use Q-learning as the foundation of DeepTO where
the Q-value for a state-action pair represents the “merit” of
choosing the action in that state. Then the optimum action
policy πQ can be presented as

πQ(sk) = argmax
xk∈A(sk)

Q(sk, xk) (7)

The main challenge in Q-learning is the estimation of the
Q values for every possible state-action pair. Since we have
a large state-action space because of the continuous state
variables, we use a feed-forward neural network to estimate
the Q values associated with the two possible actions, local
processing and offload to edge sever, for any state. The
neural network takes the state variables as input. We add an
LSTM network with a state history vector hk that estimates
future states by utilizing state history saved in hk−1. Fig. 2
shows our implementation and the number of neurons in
each fully-connected layer.

The deep neural network, also called Deep-Q-Network
(DQN), estimates the Q values as Q(s, x|θ) where θ is the
weight parameters of the neural network and can be learned
using gradient descent optimizer. The loss function of DQN
for a data set D is expressed as

L(θ) =
1

|D|
∑

(sk,xk,sk+1)∈D

(yk −Q(sk, xk|θ))2 (8)

where yk is the network target calculated using a discount
factor γ as

yk = rk + γ max
xk∈A(sk)

Q(sk+1, xk|θ) (9)

For faster convergence during training, we also use ex-
perience replay buffer, mini-batch gradient descent, and ε-
state-action exploration [3]. We omit discussing these DQN
enhancements due to space limitation.

3. EVALUATION
In this section, we first discuss our evaluation settings,

performance metrics, and benchmark algorithms. We then
present our results.

3.1 Methodology
Settings. We use a simulation-based evaluation of DeepTO

using a mix of real-world and synthetic traces. We consider
a mobile device with a battery capacity of 120 Jules, 1.5
GHz processor, and a transmission power of 500 mW [5].
The arriving offloading tasks have uniformly randomly cho-
sen data sizes between 500 KB and 1 MB, and processing
requirements between 500 million and 2000 million CPU cy-
cles. To incorporate other tasks/applications running on the
mobile device, we set the available capacity for the offload
table tasks between 20% to 100% of the 1.5GHz (i.e., 1500
million CPU cycles per second) processor. We calculate the
energy consumption for task processing as τ ∗Fm(µm

k )2 ∗ ck
where τ is the effective switched capacitance of the chip.
We use τ = 10−27 in our simulation [4]. To account for the
energy consumption of other non-offloading tasks, we con-
sider a constant energy consumption rate that uses up the
battery in 48 hours.

For both the edge and cloud, we consider a 3.6 GHz pro-
cessor. We use Uber’s regional rideshare requests in New
York as a typical workload pattern of an edge server [8].
The available processing capacity at the edge with utiliza-
tion µe ∈ [0, 1] is calculated as (1 − µe) ∗ 3.6 × 109 cy-
cles/seconds. To account for the unreliable edge perfor-
mance, we offload tasks from edge to cloud with a prob-
ability 2.5 ·max(µe − 0.5, 0). We consider the cloud always
has its full capacity (i.e., 3.6 × 109 cycles/seconds) avail-
able for the offloaded task, but incurs additional network
delay of ∼200 milliseconds based on our ping latency data
collected from Azure US-South-Central callback server. We
choose the varying uplink rate between 8 Mbps and 13 Mbps.
While synthetic, we choose our setting based on other recent
relevant studies [11, 9, 4, 5].

We implement DQN using Keras and utilize our edge
server trace and mobile tasks to train DeepTO for 5000
episodes. We use a weight parameter w = 0.7 to have ap-
proximately equal emphasis for task completion time and
energy consumption. We use learning rate α = 0.001, and
discount factor γ = 0.9. We dynamically change the state-
action exploration variable ε that starts from 1 with a decre-
ment of 0.0005 per episode and settles at 0.05.

Performance metrics and benchmarks. We use av-
erage task completion time and average energy consump-
tion of the offloading tasks as the performance metrics. We
compare DeepTO with four benchmark policies. The ALM
policy process every task on the mobile device. ALE, on the
other hand, always offload tasks to the edge. GRD is oblivi-
ous of edge server’s further task offloading to the cloud and
makes offload decisions to minimize (5) independently for
each task. It also does not consider the battery energy level
during the offloading decision. However, we restrict all lo-
cal processing for GRD when the remaining battery is less
than 20%. OPT is the optimum policy with complete future
knowledge that minimizes OPTO and acts as the perfor-
mance upper bound for our evaluation.

3.2 Results
We show the average task completion time of the offloaded
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Figure 3: Performance of offloading tasks under dif-
ferent offloading strategies. (a) Average tasks com-
pletion time. (b) Average energy consumption.

tasks for different policies in Fig. 3(a) where the boxes rep-
resent the values between the lower and upper quartile (i.e.,
25% to 75%), the line inside the box is the median, the dia-
mond markers are the mean, and the whiskers extend up to
the lower 10-percentile and the upper 90-percentile values.
We see that ALM has the worst average performance due to
its limited processing capacity. ALE does better than ALM
since it utilizes powerful edge servers for task processing.
But, it incurs the data transmission time. GRD performs
better than ALM and ALE as it can choose between local
processing and edge offloading based on a task’s comput-
ing requirement and data size. However, it performs worse
than OPT and DeepTO because it is oblivious to edge-to-
cloud offloading resulting in inaccurate estimation of task
completion time. DeepTO, on the other hand, performs
close to OPT as it learns the edge’s cloud offloading be-
havior and can avoid cases where edge-to-cloud offloading
affects performance. In terms of energy consumption shown
in Fig. 3(b), GRD is not much worse than OPT or DeepTO
since the edge-to-cloud offload mainly affects task comple-
tion time and does not add additional energy consumption
for the mobile device. ALE has the best energy performance
since it only incurs data transmission energy, while ALM has
the worst energy consumption performance.

Next, in Fig. 4 we look at how the performance of the of-
floading strategies change as the edge server’s performance
unreliability increases. For that, we increase our edge-to-
cloud offload probability and compare DeepTO with OPT
and GRD for different percentages of tasks offloaded from the
edge server to the cloud. We see in Fig. 4(a) that DeepTO
can maintain performance close to the OPT even when the
edge-to-cloud offloading increases. GRD, on the hand, drifts
farther away from OPT since it makes more inaccurate pre-
dictions with increasing edge-to-cloud offloading. The en-
ergy consumption in Fig. 4(b), on the other hand, shows
that GRD’s energy consumption does not change with more
edge-to-cloud offloading since it only affects the task comple-
tion time. Energy consumption of both OPT and DeepTO
changes with offloading percentage and when edge-to-cloud
offloading goes beyond ∼40%, both consume more energy
than GRD as they process more task on the mobile device.

We also evaluate DeepTO with different simulation pa-
rameters and settings. The results we obtain are consistent
with that of Figs. 3 and 4.

4. CONCLUDING REMARKS
In this paper, we investigated how a deep reinforcement

learning-based solution makes mobile task offloading deci-
sions when the operating environment exhibits unreliable
behavior. We showed that our deep Q-learning based so-
lution, DeepTO, can perform very close to the optimum
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Figure 4: Impact of increasing unreliability of edge-
performance (i.e., more edge-to-cloud offloading) on
task offloading.

offloading algorithm with complete knowledge of the fu-
ture task and operation environment. We also showed that
DeepTO can evolve with increasing unreliability of edge servers
and maintain a close to optimum performance.
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